Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38498554

RESUMEN

New goals for industry and science have led to increased awareness of food safety and healthier living in the modern era. Here, one of the challenges in food quality assurance is the presence of pathogenic microorganisms. As planktonic cells can form biofilms and go into a sessile state, microorganisms are now more resistant to broad-spectrum antibiotics. Due to their proven antibacterial properties, essential oils represent a potential option to prevent food spoilage in the search for effective natural preservatives. In this study, the chemical profile of Citrus limon essential oil (CLEO) was evaluated. GC-MS analysis revealed that limonene (60.7%), ß-pinene (12.6%), and γ-terpinene (10.3%) are common constituents of CLEO, which prompted further research on antibacterial and antibiofilm properties. Minimum inhibitory concentration (MIC) values showed that CLEO generally exhibits acceptable antibacterial properties. In addition, in situ antimicrobial research revealed that vapour-phase CLEO can arrest the growth of Candida and Y. enterocolitica species on specific food models, indicating the potential of CLEO as a preservative. The antibiofilm properties of CLEO were evaluated by MIC assays, crystal violet assays, and MALDI-TOF MS analysis against S. enterica biofilm. The results of the MIC and crystal violet assays showed that CLEO has strong antibiofilm activity. In addition, the data obtained by MALDI-TOF MS investigation showed that CLEO altered the protein profiles of the bacteria studied on glass and stainless-steel surfaces. Our study also found a positive antimicrobial effect of CLEO against S. enterica. The anti-Salmonella activity of CLEO in vacuum-packed sous vide carrot samples was slightly stronger than in controls. These results highlight the advantages of the antibacterial and antibiofilm properties of CLEO, suggesting potential applications in food preservation.

2.
Arch Pharm (Weinheim) ; 357(5): e2300725, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38346258

RESUMEN

Over the years, pharmacological agents bearing antioxidant merits arose as beneficial in the prophylaxis and treatment of various health conditions. Hazardous effects of radical species hyperproduction disrupt normal cell functioning, thus increasing the possibility for the development of various oxidative stress-associated disorders, such as cancer. Contributing to the efforts for efficient antioxidant drug discovery, a thorough in vitro and in silico assessment of antioxidant properties of 14 newly synthesized N-pyrocatechoyl and N-pyrogalloyl hydrazones (N-PYRs) was accomplished. All compounds exhibited excellent antioxidant potency against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. The extensive in silico analysis revealed multiple favorable features of N-PYRs to inactivate harmful radical species, which supported the obtained in vitro results. Also, in silico experiments provided insights into the preferable antioxidant pathways. Prompted by these findings, the cytotoxicity effects and the influence on the redox status of cancer HCT-116 cells and healthy fibroblasts MRC-5 were evaluated. These investigations exposed four analogs exhibiting both cytotoxicity and selectivity toward cancer cells. Furthermore, the frequently uncovered antimicrobial potency of hydrazone-type hybrids encouraged investigations on G+ and G- bacterial strains, which revealed the antibacterial potency of several N-PYRs. These findings highlighted the N-PYRs as excellent antioxidant agents endowed with cytotoxic and antibacterial features.


Asunto(s)
Antibacterianos , Antineoplásicos , Antioxidantes , Hidrazonas , Pruebas de Sensibilidad Microbiana , Humanos , Hidrazonas/farmacología , Hidrazonas/química , Hidrazonas/síntesis química , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Células HCT116 , Estructura Molecular , Supervivencia Celular/efectos de los fármacos , Picratos/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Relación Dosis-Respuesta a Droga
3.
Mol Biol Rep ; 51(1): 218, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281240

RESUMEN

BACKGROUND: Shikonin is a naturally occurring naphthoquinone found in the roots of several genera of the Boraginaceae family, widely known for its numerous biological activities, such as antiinflammatory, antioxidant, antimicrobial and anticancer. In this study, the antitumor effect of six naphthoquinones isolated from the roots of Onosma visianii was evaluated using two cell lines, mouse melanoma B16 and highly aggressive rat glioma cell line C6. METHODS AND RESULTS: All examined shikonins dose-dependently decreased the viability of tested cells, with compounds 5 and 6 being the most potent ones and hence subjected to further analysis. The diminished viability of B16 melanoma cells was in correlation with detected caspase-mediated apoptosis. Importantly, observed altered cell morphology along with the loss of dividing potential upon exposure to both shikonins implied reprogram of B16 cell phenotype. Elevated expression of myelin basic protein indicated the acquirement of Schwann-like cell phenotype, while detected autophagy might be connected to this phenomenon. On the contrary, upon exposure to both agents, C6 cells underwent specific cell death-anoikis, provoked by detachment from the extracellular matrix and compromised integrin signaling. Oppositely to compound 5, compound 6 realized anoikis in a caspase-independent manner and under sustained ERK1/2 activation, indicating the deviation from standard proanoikis signaling. CONCLUSIONS: Herein, we have pointed out the diversity and novelty in the mode of action of shikonin derivatives depending on the tumor cell features, which represents a good platform for new investigations of these promising natural compounds.


Asunto(s)
Boraginaceae , Naftoquinonas , Neoplasias , Ratas , Ratones , Animales , Anoicis , Apoptosis , Naftoquinonas/farmacología , Diferenciación Celular , Caspasas , Línea Celular Tumoral
4.
Plants (Basel) ; 12(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068556

RESUMEN

With the growing issues of food spoilage, microbial resistance, and high mortality caused by cancer, the aim of this study was to evaluate T. zygis essential oil (TZEO) as a potential solution for these challenges. Here, we first performed GC/MS analysis which showed that the tested TZEO belongs to the linalool chemotype since the abundance of linalool was found to be 38.0%. Antioxidant activity assays showed the superiority of TZEO in neutralizing the ABTS radical cation compared to the DPPH radical. The TZEO was able to neutralize 50% of ABTS•+ at the concentration of 53.03 ± 1.34 µg/mL. Antimicrobial assessment performed by employing disc diffusion and minimal inhibitory concentration assays revealed TZEO as a potent antimicrobial agent with the highest inhibition activity towards tested gram-negative strains. The most sensitive on the treatment with TZEO was Enterobacter aerogenes showing an MIC 50 value of 0.147 ± 0.006 mg/mL and a MIC 90 value of 0.158 ± 0.024 mg/mL. Additionally, an in situ analysis showed great effects of TZEO in inhibiting gram-negative E. coli, P. putida, and E. aerogenes growing on bananas and cucumbers. Treatment with the TZEO vapor phase in the concentration of 500 µg/mL was able to reduce the growth of these bacteria on the food models to the extent > 90%, except for E. coli growth on the cucumber, which was reduced to the extent of 83.87 ± 4.76%. Furthermore, a test on the antibiofilm activity of the tested essential oil revealed its biofilm prevention effects against Salmonella enterica which forms biofilms on plastic and stainless-steel surfaces. Performed tests on the TZEO effects towards cell viability showed no effects on the normal MRC-5 cell line. However, the results of MTT assay of TZEO effects on three cancer cell lines (MDA-MB-231, HCT-116, and K562) suggest that TZEO exerted the strongest effects on the inhibition of the viability of MDA-MB-231 cells, especially after long-term treatment in the highest concentration applied with reducing the viability of the cells to 57%. Additionally, results of NBT and Griess assays suggest that TZEO could be a convenient candidate for future testing for developing novel antitumor therapies.

5.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982252

RESUMEN

Salvia sclarea essential oil (SSEO) has a long tradition in the food, cosmetic, and perfume industries. The present study aimed to analyze the chemical composition of SSEO, its antioxidant activity, antimicrobial activity in vitro and in situ, antibiofilm, and insecticidal activity. Besides that, in this study, we have evaluated the antimicrobial activity of SSEO constituent (E)-caryophyllene and standard antibiotic meropenem. Identification of volatile constituents was performed by using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) techniques. Results obtained indicated that the main constituents of SSEO were linalool acetate (49.1%) and linalool (20.6%), followed by (E)-caryophyllene (5.1%), p-cimene (4.9%), a-terpineol (4.9%), and geranyl acetate (4.4%). Antioxidant activity was determined as low by the means of neutralization of the DDPH radical and ABTS radical cation. The SSEO was able to neutralize the DPPH radical to an extent of 11.76 ± 1.34%, while its ability to decolorize the ABTS radical cation was determined at 29.70 ± 1.45%. Preliminary results of antimicrobial activity were obtained with the disc diffusion method, while further results were obtained by broth microdilution and the vapor phase method. Overall, the results of antimicrobial testing of SSEO, (E)-caryophyllene, and meropenem, were moderate. However, the lowest MIC values, determined in the range of 0.22-0.75 µg/mL for MIC50 and 0.39-0.89 µg/mL for MIC90, were observed for (E)-caryophyllene. The antimicrobial activity of the vapor phase of SSEO (towards microorganisms growing on potato) was significantly stronger than that of the contact application. Biofilm analysis using the MALDI TOF MS Biotyper showed changes in the protein profile of Pseudomonas fluorescens that showed the efficiency of SSEO in inhibiting biofilm formation on stainless-steel and plastic surfaces. The insecticidal potential of SSEO against Oxycarenus lavatera was also demonstrated, and results show that the highest concentration was the most effective, showing insecticidal activity of 66.66%. The results obtained in this study indicate the potential application of SSEO as a biofilm control agent, in the shelf-life extension and storage of potatoes, and as an insecticidal agent.


Asunto(s)
Antiinfecciosos , Insecticidas , Aceites Volátiles , Salvia , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antioxidantes/farmacología , Antioxidantes/química , Meropenem , Cromatografía de Gases y Espectrometría de Masas , Antiinfecciosos/farmacología , Insecticidas/farmacología , Pruebas de Sensibilidad Microbiana
6.
Plants (Basel) ; 12(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903935

RESUMEN

Eucalyptus globulus essential oil (EGEO) is considered as a potential source of bioactive compounds with significant biological activity. The aim of this study was to analyze the chemical composition of EGEO, in vitro and in situ antimicrobial activity, antibiofilm activity, antioxidant activity, and insecticidal activity. The chemical composition was identified using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The main components of EGEO were 1,8-cineole (63.1%), p-cimene (7.7%), a-pinene (7.3%), and a-limonene (6.9%). Up to 99.2% of monoterpenes were present. The antioxidant potential of essential oil and results indicate that 10 µL of this sample can neutralize 55.44 ± 0.99% of ABTS•+, which is equivalent to 3.22 ± 0.01 TEAC. Antimicrobial activity was determined via two methods: disk diffusion and minimum inhibitory concentration. The best antimicrobial activity was shown against C. albicans (14.00 ± 1.00 mm) and microscopic fungi (11.00 ± 0.00 mm-12.33 ± 0.58 mm). The minimum inhibitory concentration showed the best results against C. tropicalis (MIC 50 2.93 µL/mL, MIC 90 3.17 µL/mL). The antibiofilm activity of EGEO against biofilm-forming P. flourescens was also confirmed in this study. The antimicrobial activity in situ, i.e., in the vapor phase, was significantly stronger than in the contact application. Insecticidal activity was also tested and at concentrations of 100%, 50%, and 25%; the EGEO killed 100% of O. lavaterae individuals. EGEO was comprehensively investigated in this study and information regarding the biological activities and chemical composition of the essential oil of Eucalyptus globulus was expanded.

7.
Plants (Basel) ; 12(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903957

RESUMEN

The aim of this study was to evaluate the antioxidant, antibiofilm, antimicrobial (in situ and in vitro), insecticidal, and antiproliferative activity of Cupressus sempervirens essential oil (CSEO) obtained from the plant leaf. The identification of the constituents contained in CSEO was also intended by using GC and GC/MS analysis. The chemical composition revealed that this sample was dominated by monoterpene hydrocarbons α-pinene, and δ-3-carene. Free radical scavenging ability, performed by using DPPH and ABTS assays, was evaluated as strong. Higher antibacterial efficacy was demonstrated for the agar diffusion method compared to the disk diffusion method. The antifungal activity of CSEO was moderate. When the minimum inhibitory concentrations of filamentous microscopic fungi were determined, we observed the efficacy depending on the concentration used, except for B. cinerea where the efficacy of lower concentration was more pronounced. The vapor phase effect was more pronounced at lower concentrations in most cases. Antibiofilm effect against Salmonella enterica was demonstrated. The relatively strong insecticidal activity was demonstrated with an LC50 value of 21.07% and an LC90 value of 78.21%, making CSEO potentially adequate in the control of agricultural insect pests. Results of cell viability testing showed no effects on the normal MRC-5 cell line, and antiproliferative effects towards MDA-MB-231, HCT-116, JEG-3, and K562 cells, whereas K562 cells were the most sensitive. Based on our results, CSEO could be a suitable alternative against different types of microorganisms as well as suitable for the control of biofilms. Due to its insecticidal properties, it could be used in the control of agricultural insect pests.

8.
Plants (Basel) ; 11(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36559586

RESUMEN

The aim of this study is to evaluate the chemical composition of Tanacetum balsamita L. essential oils (EOs) obtained from different plant organs, flowers (FEO), leaves (LEO), and stems (SEO), as well as to assess their biological properties. The results obtained by using GC and GC/MS analysis indicate that this plant belongs to the carvone chemotype. Moreover, we examined the oil's antimicrobial and antitumor potential. Antimicrobial effects were determined using minimum inhibitory concentrations assay and the vapor phase method. Obtained results indicate better antimicrobial activity of investigated EO samples compared to the commercially available antibiotics. On the treatment with FEO, Y. enterocolitica and H. influenzae showed high sensitivity, while treatment with LEO and SEO showed the highest effects against S. aureus. The vapor phase method, as an in situ antibacterial analysis, was performed using LEO. Obtained results showed that this EO has significant activity toward S. pneumoniae in the apple and carrot models, L. monocytogenes in the pear model, and Y. enterocolitica in the white radish model. The potential antitumor mechanisms of FEO, LEO, and SEO were determined by the means of cell viability, redox potential, and migratory capacity in the MDA-MB-231 and MDA-MB-468 cell lines. The results show that these EOs exert antiviability potential in a time- and dose-dependent manner. Moreover, treatments with these EOs decreased the levels of superoxide anion radical and increased the levels of nitric oxide in both tested cell lines. The results regarding total and reduced glutathione revealed, overall, an increase in the levels of total glutathione and a decrease in the levels of reduced glutathione, indicating strong antioxidative potential in tested cancer cells in response to the prooxidative effects of the tested EOs. The tested EOs also exerted a drop in migratory capacity, which indicates that they can be potentially used as chemotherapeutic agents.

9.
Plants (Basel) ; 11(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36501253

RESUMEN

Spanish marjoram (Thymus mastichina) and cardamom (Elettaria cardamomum) are traditional aromatic plants with which several pharmacological properties have been associated. In this study, the volatile composition, antioxidative and antimigratory effects on human breast cancer (MDA-MB-468 cell line), antimicrobial activity, and antibiofilm effect were evaluated. Results obtained via treatment of human breast cancer cells generally indicated an inhibitory effect of both essential oils (EOs) on cell viability (after long-term treatment) and antioxidative potential, as well as the reduction of nitric oxide levels. Antimigratory effects were revealed, suggesting that these EOs could possess significant antimetastatic properties and stop tumor progression and growth. The antimicrobial activities of both EOs were determined using the disc diffusion method and minimal inhibition concentration, while antibiofilm activity was evaluated by means of mass spectrometry. The best antimicrobial effects of T. mastichina EO were found against the yeast Candida glabrata and the G+ bacterium Listeria monocytogenes using the disc diffusion and minimal inhibitory concentration methods. E. cardamomum EO was found to be most effective against Pseudomas fluorescens biofilm using both methods. Similarly, better effects of this oil were observed on G- compared to G+ bacterial strains. Our study confirms that T. mastichina and E. cardamomum EOs act to change the protein structure of older P. fluorescens biofilms. The results underline the potential use of these EOs in manufactured products, such as foodstuffs, cosmetics, and pharmaceuticals.

10.
Animals (Basel) ; 12(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36139173

RESUMEN

The present study aimed to evaluate deer meat microbiological quality when treated with essential oil (EO) from Litsea cubeba (dissolved in rapeseed oil at concentrations 0.5 and 1%), in combination with vacuum packaging during 20 days of storage of meat at 4 °C. Total viable counts (TVC), coliforms bacteria (CB), lactic acid bacteria (LAB) and Pseudomonas spp. were analysed at day 0, 1, 5, 10, 15 and 20. MALDI-TOF MS Biotyper technology was applied to identify microorganisms isolated from meat. The highest number of TVC at the end of the experiment was 5.50 log CFU/g in the aerobically packaged control group and the lowest number of TVC was 5.17 log CFU/g in the samples treated with 1.0% Litsea cubeba EO. CB were not detected in the samples treated with 1.0% Litsea cubeba EO during the entire storage period. Bacteria of the genus Pseudomonas were detected only in the aerobically and vacuum packaged control group. The highest number of LAB was 2.06 log CFU/g in the aerobic control group, and the lowest number of LAB was 2.01 log CFU/g in the samples treated with 1.0% Litsea cubeba EO on day 20. The most frequently isolated bacteria from deer meat were Pseudomonas ludensis, Pseudomonas corrugata, Pseudomonas fragi, Bacillus cereus, Staphylococcus epidermidis and Sphingomonas leidyi.

11.
Molecules ; 27(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36144644

RESUMEN

It is well known that abiotic components can affect biosynthetic pathways in the production of certain volatile compounds. The aim of this study was to compare the chemical composition of essential oils obtained from Orlaya grandiflora (L.) Hoffm. collected from two localities in Serbia (continental climate, OG1) and Montenegro (Mediterranean climate, OG2) and to assess their antitumor potential on the human colon cancer HCT-116 and breast cancer MDA-MB-231 cell lines. EOs obtained by hydrodistillation were analyzed using GC-MS and GC-FID methods. The results indicate considerable differences in the chemical compositions of the two samples. Although in both samples the main class of volatiles observed was sesquiterpenes (47.5% for OG1 and 70.1% for OG2), the OG1 sample was characterized by a high amount of monoterpene hydrocarbons (29.3%), and sesquiterpene germacrene D (29.5%) as the most abundant compound. On the other hand, the OG2 sample contained a high quantity of oxygenated sesquiterpenes (20.6%), and ß-elemene (22.7%) was the major constituent. The possible antitumor mechanisms of these EOs in the HCT-116 and MDA-MB-231 cell lines were examined by means of cell viability, apoptosis, redox potential, and migratory capacity. The antiviability potential appeared to be dose dependent, since the results showed that both EOs decreased the viability of the tested cells. Stronger antitumor effects were shown in MDA-MB-231 cells after short-term treatment, especially at the highest applied concentration, where the percentage of viability was reduced by over 40%. All tested concentrations of EOs exhibited proapoptotic activity and elevated activity of caspase-3 in a dose- and time-dependent manner. The results also showed decreased concentrations of superoxide anion radical in the treated cells, which indicates their significant antioxidative role. Long-term treatments showed mild recovery effects on cell viability in both cell lines, probably caused by the balancing of redox homeostasis. Elevated levels of nitrites indicate high levels of nitric oxide (NO) production and suggest its higher bioavailability due to the antioxidative environment. The tested EOs also induced a drop in migratory capacity, especially after short-time treatments. Taken together, these results suggest considerable antitumor activity of both EOs, which could have potential therapeutic applications.


Asunto(s)
Apiaceae , Aceites Volátiles , Sesquiterpenos , Antioxidantes/química , Caspasa 3 , Homeostasis , Humanos , Monoterpenos/química , Óxido Nítrico , Nitritos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Oxidación-Reducción , Sesquiterpenos/química , Sesquiterpenos/farmacología , Superóxidos
12.
Food Technol Biotechnol ; 60(2): 213-224, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35910272

RESUMEN

Research background: Acquisition of migratory potential is pivotal for cancer cells, enabling invasion and metastasis of colorectal carcinoma. Royal jelly and its bioactive component trans-10-hydroxy-2-decenoic acid (10H2DA) showed remarkable antimetastatic potential, but the molecular mechanism underlying this activity is unclear. Experimental approach: Identification and quantification of 10H2DA in royal jelly originating from Serbia was done by HPLC method. Cytotoxicity of 10H2DA was measured by tetrazolium dye MTT test in concentration range 1-500 µg/mL after 24 and 72 h. Its effect on the collective and single-cell migration was measured by wound healing and transwell migration assays. Invasive potential of cancer cells was evaluated by a transwell method modified with collagen. Immunofluorescence was used for migratory and invasive protein expression, while the gene expression of these markers was evaluated by quantitative real time polymerase chain reaction (qRT-PCR). All assays were applied on human colorectal carcinoma HCT-116 and SW-480 cell lines and, except for MTT, evaluated after 24 h of treatment with two selected concentrations of royal jelly and 10H2DA. Results and conclusions: According to HPLC, the mass fraction of 10H2DA in royal jelly was 0.92% (m/m). Treatment with 10H2DA showed no cytotoxic effect; however, significant inhibitory potential of royal jelly and 10H2DA on the motility and invasiveness of colorectal cancer cells was observed. More pronounced effect was exerted by 10H2DA, which significantly suppressed collective cell migration and invasiveness of SW-480 cells, as well as single- and collective cell migration and invasive potential of HCT-116 cell line. Treatments increased epithelial markers E-cadherin and cytoplasmic ß-catenin in HCT-116 cells, thus stabilizing intercellular connections. In SW-480 cells, 10H2DA increased E-cadherin on protein and gene level, and suppressed epithelial-mesenchymal transition (EMT) markers. In both cell lines, treatments induced significant suppression of promigratory/proinvasive markers: N-cadherin, vimentin and Snail on protein and gene level, which explains decreased migratory and invasive potential of HCT-116 and SW-480 cells. Novelty and scientific contribution: Our study presents new findings and elucidation of royal jelly and 10H2DA molecular mechanism that underlies their antimigratory/antiinvasive activity on colorectal cancer cells. These findings are shown for the first time indicating that these natural products are a valuable source of anticancer potential and should be reconsidered for further antitumour therapy.

13.
Plants (Basel) ; 11(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36015417

RESUMEN

This report summarizes the chemical composition analysis of Nepeta cataria L. flower, leaf, and stem methanol extracts (FME, LME, SME, respectively) as well as their hepatoprotective and antigenotoxic features in vivo and in silico. Herein, Wistar rat liver intoxication with CCl4 resulted in the generation of trichloromethyl and trichloromethylperoxy radicals, causing lipid peroxidation within the hepatocyte membranes (viz. hepatotoxicity), as well as the subsequent formation of aberrant rDNA adducts and consequent double-strand break (namely genotoxicity). Examined FME, LME, and SME administered orally to Wistar rats before the injection of CCl4 exerted the most notable pharmacological properties in the concentrations of 200, 100, and 50 mg/kg of body weight, respectively. Thus, the extracts' hepatoprotective features were determined by monitoring the catalytic activities of enzymes and the concentrations of reactive oxidative species, modulating the liver redox status. Furthermore, the necrosis of hepatocytes was assessed by means of catalytic activities of liver toxicity markers. The extracts' antigenotoxic features were quantified using the comet assay. Distinct pharmacological property features may be attributed to quercitrin (8406.31 µg/g), chlorogenic acid (1647.32 µg/g), and quinic acid (536.11 µg/g), found within the FME, rosmarinic acid (1056.14 µg/g), and chlorogenic acid (648.52 µg/g), occurring within the LME, and chlorogenic acid (1408.43 µg/g), the most abundant in SME. Hence, the plant's secondary metabolites were individually administered similar to extracts, upon which their pharmacology in vivo was elucidated in silico by means of the structure-based studies within rat catalase, as a redox marker, and rat topoisomerase IIα, an enzyme catalyzing the rat DNA double-strand break. Conclusively, the examined N. cataria extracts in specified concentrations could be used in clinical therapy for the prevention of toxin-induced liver diseases.

14.
R Soc Open Sci ; 9(6): 211853, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35706666

RESUMEN

Cancer is still a relentless public health issue. Particularly, colorectal cancer is the third most prevalent cancer in men and the second in women. Moreover, cancer development and growth are associated with various cell disorders, such as oxidative stress and inflammation. The quest for efficient therapeutics is a challenging task, especially when it comes to achieving both cytotoxicity and selectivity. Herein, five series of phenolic N-acylhydrazones were synthesized and evaluated for their antioxidant potency, as well as their influence on HCT-116 and MRC-5 cells viability. Among 40 examined analogues, 20 of them expressed antioxidant activity against the DPPH radical. Furthermore, density functional theory was employed to estimate the antioxidant potency of the selected analogues from the thermodynamical aspect, as well as the preferable free-radical scavenging pathway. Cytotoxicity assay exposed enhanced selectivity of a number of analogues toward cancer cells. The structure-activity analysis revealed the impact of the type and position of the functional groups on both cell viability and selectivity toward cancer cells.

15.
EXCLI J ; 19: 48-70, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32038116

RESUMEN

In the present work we modified the procedure for isolation of naphthoquinones α-methylbutyrylshikon ( 1 ), acetylshikonin ( 2 ) and ß-hydroxyisovalerylshikonin ( 3 ) from Onosma visianii Clem. We also investigated possible mechanisms of 1 , 2 and 3 as antitumor agents. Accordingly, we estimated concentrations of superoxide anion radical (O2 .-), nitrite (NO2 -) and glutathione in HCT-116 and MDA-MB-231 cell lines. Compounds 1 and 3 expressed significant prooxidative activity, while all tested compounds exhibited significant increase in nitrite levels. Also, all examined compounds significantly increased the concentration of oxidized glutathione (GSSG), suggesting significant prooxidative disbalance. The levels of reduced glutathione (GSH) were also elevated as a part of antioxidative cell response. The data indicate that induced oxidative imbalance could be one of the triggers for previously recorded decreased viability of HCT-116 and MDA-MB-231 cells exposed to tested naphthoquinone derivatives. Moreover, we examined interactions mode of compounds 1 , 2 and 3 with CT-DNA as one of the crucial targets of many molecules that express cytotoxic activity. The results obtained by UV-visible, fluorescence and molecular docking study revealed that 1 , 2 and 3 bound to CT-DNA through minor groove binding. Furthermore, the interactions between HSA and 1 , 2 and 3 were examined employing the same methods as for the CT-DNA interaction study. Based on the obtained results, it can be concluded that naphthoquinones 1 , 2 and 3 could be effectively transported by human serum albumin. As a conclusion, this study provides further insight of antitumor activity of selected naphthoquinones.

16.
Saudi Pharm J ; 28(1): 136-146, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31920439

RESUMEN

Acetylshikonin (AcSh), as a red colored pigment found in roots of the plants from family Boraginaceae, showed excellent cytotoxic activity. Due to its hydrophobic nature, and thus poor bioavailability, the aim of this study was to prepare acetylshikonin/ß-cyclodextrin (AcSh/ß-CD) inclusion complex by using coprecipitation method, characterize obtained system by using UV/VIS, IR and 1H NMR spectroscopy, and determine cytotoxic activity. Phase solubility test indicated formation of AL-type binary system (substrate/ligand ratio was 1:1 M/M), with stability constant Ks of 306.01 M-1. Formation of noncovalent bonds between inner layer of the hole of ß-CD and AcSh was observed using spectroscopic methods. Notable changes in chemical shifts of two protons (-0.020 ppm) from naphthoquinone moiety (C6-H and C7-H), as well as protons from hydroxyl groups (-0.013 and -0.009, respectively) attached to C5 and C8 carbons from naphthoquinone part indicate that the molecule of AcSh enters the ß-CD cavity from the aromatic side. Cytotoxic activity against HCT-116 and MDA-MB-231 cell lines was measured by MTT test and clonogenic assay. Mechanisms of action of free AcSh and inclusion complex were assessed by flow cytometry. In comparison to free AcSh, AcSh/ß-CD showed stronger short-term effect on HCT-116 cells and superior long-term effect on both cell lines. Inclusion complex induced more pronounced cell cycle arrest and autophagy inhibition, and induced increase in accumulation of intracellular ROS more effectively than free AcSh. In conclusion, AcSh/ß-CD binary system showed better performances regarding cytotoxic activity against tested tumor cell lines.

17.
Food Res Int ; 106: 71-80, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29579978

RESUMEN

Isolated and structurally confirmed, eleven flavonoids from propolis were examined for their cytotoxicity toward human colon cancer and human breast cancer cells. Their effect on induction of apoptosis and their antioxidative activities were also evaluated. Six flavonoids induced cytotoxic effects in both cell lines. Luteolin had a marked effect on both cell lines, especially on HCT-116 cells (IC50 72h, 66.86µM). Also, luteolin was observed to have the highest apoptotic potential after 72h treatment of examined cell lines (27.13% and 37.09%, respectively). Myricetin exhibited selective inhibition of cell growth (IC50 114.75µM) and induced apoptosis in MDA-MB-231 cells only. Luteolin and galangin exhibited prooxidative properties 24h after the treatment in HCT-116 cells, while myricetin induced prooxidative effects in MDA-MB-231 cells. On the other hand, selected flavonoids exhibited antioxidative properties 72h after the treatment, decreasing superoxide anion radical and nitrite levels in both cell lines. Cytotoxic and proapoptotic effects on colon and breast cancer cell lines and the influence on their redox status make tested flavonoids good candidates for developing new anticancer drugs.


Asunto(s)
Antineoplásicos/uso terapéutico , Antioxidantes/uso terapéutico , Apiterapia , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias del Colon/tratamiento farmacológico , Flavonoides/uso terapéutico , Própolis/uso terapéutico , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Apoptosis , Mama/efectos de los fármacos , Mama/metabolismo , Línea Celular Tumoral , Colon/efectos de los fármacos , Colon/metabolismo , Femenino , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Células HCT116 , Humanos , Luteolina/aislamiento & purificación , Luteolina/farmacología , Luteolina/uso terapéutico , Nitritos/metabolismo , Oxidantes/aislamiento & purificación , Oxidantes/farmacología , Oxidantes/uso terapéutico , Oxidación-Reducción , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Própolis/química , Própolis/farmacología , Superóxidos/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-29367024

RESUMEN

The experimental and theoretical investigations of structure of the 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione were performed. X-ray structure analysis and spectroscopic methods (FTIR and FT-Raman, 1H and 13C NMR), along with the density functional theory calculations (B3LYP functional with empirical dispersion corrections D3BJ in combination with the 6-311 + G(d,p) basis set), were used in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative. Molecular docking analysis was carried out to identify the potency of inhibition of the title molecule against human's Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB) and Methylenetetrahydrofolate reductase (MTHFR). The inhibition activity was obtained for ten conformations of ligand inside the proteins.


Asunto(s)
Cromanos/química , Cromanos/farmacología , Espectroscopía de Resonancia Magnética/métodos , Simulación del Acoplamiento Molecular , Teoría Cuántica , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman/métodos , Proteínas Portadoras/antagonistas & inhibidores , Humanos , Metilenotetrahidrofolato Reductasa (NADPH2)/antagonistas & inhibidores , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Termodinámica
19.
Nat Prod Res ; 32(22): 2712-2716, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28882053

RESUMEN

In the present study, five root extracts of Onosma visianii Clem were investigated for their in vitro cytotoxic activity. On the basis of HPLC-PDA analysis, these extracts have proved to be a rich source of naphthoquinones as natural colourants for food and cosmetic industry. All investigated root extracts contain acetylshikonin, isobutyrylshikonin and α-methylbutyrylshikonin as major compounds. As the most abundant source of active compounds for antitumour therapy, acetone, chloroform and ethyl acetate extracts showed strong cytotoxic activity towards HCT-116 and MDA-MB-231 cancer cell lines. Also, these extracts induced apoptosis and cell cycle arrest in HCT-116 and MDA-MB-231 cancer cell lines.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis , Boraginaceae/química , Puntos de Control del Ciclo Celular , Naftoquinonas/farmacología , Extractos Vegetales/farmacología , Antraquinonas , Línea Celular Tumoral , Humanos , Estructura Molecular , Fitoquímicos/farmacología , Raíces de Plantas/química
20.
EXCLI J ; 16: 73-88, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28435429

RESUMEN

In this study, the antibacterial and cytotoxic activities of isolated compounds from the roots of Onosma visianii were investigated. By using different chromatographic techniques and appropriate spectroscopic methods, the seven naphthoquinones were described: deoxyshikonin ( 1 ), isobutyrylshikonin ( 2 ), α-methylbutyrylshikonin ( 3 ), acetylshikonin ( 4 ), ß-hydroxyisovalerylshikonin ( 5 ), 5,8-O-dimethyl isobutyrylshikonin ( 6 ) and 5,8-O-dimethyl deoxyshikonin ( 7 ). Among the tested compounds, 3 and 4 exhibited the highest antibacterial activities toward all tested bacterial species (MIC50 and MIC90 for gram positive bacteria: 6.40 µg/mL-12.79 µg/mL and 6.82 µg/mL-13.60 µg/mL, respectively; for gram negative bacteria: 4.27 µg/mL-8.53 µg/mL and 4.77 µg/mL-9.54 µg/mL, respectively). Also, naphthoquinones 3 and 4 exhibited strong cytotoxic activity against MDA-MB-231 cells (IC50 values 86.0 µg/mL and 80.2 µg/mL, respectively), while compounds 1 , 3 , 4 and 5 significantly decreased viability of HCT116 cells (IC50 values of 97.8 µg/mL, 15.2 µg/mL, 24.6 µg/mL and 30.9 µg/mL, respectively). Our results indicated that all tested naphthoquinone pigments are potential candidates for clinical uses as antibacterial and cytotoxic agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...